NASA approaches to preventing and mitigating human error

- Space
 - intense mission-specific training
 - close monitoring by support personnel
- Aviation
 - human-centered design
 - initial design: human factors principles
 - design revisions: ASRS

Aviation Error and Technological Change

Early aircraft: controls

Example: reversed flight surface controls

By 1950s: instruments

Example: altimeter design

By 1980s: automation-related procedures

Example: mode confusion in vertical navigation

Example: Automated Teller Machine

Problem: users prone to error in retrieving card

- Costly
- Preventable
- Predictable
- ...but easily overlooked

Predicting Usability Problems

Strategy: Automated Cognitive Walkthrough

Standard cognitive walkthrough: designer verbally steps through the SOPs for a new device, at each step asking a set of questions intended to identify overlooked usability problems.

Example procedure

- 1. approach ATM
- 2. insert card
- 3. select "withdraw"
- 4. specify amount
- 5. collect money
- 6. collect card
- 7. collect receipt

Example questions

controls reachable?

wrong controls bumpable?

awkward motions required?

instructions legible?

options apparent?

next step prompted?

next step after main goal done?

Etc...

Generating Procedural Behavior Procedure Description Language

PDL Example

```
(procedure
(index (insert-ATM-card))
(profile (right-hand (20 seconds)))
(step s1 (grasp card))
(step s2 (find-loc card-slot => ?loc))
(step s3 (move right-hand ?loc)
    (waitfor (holding card) (known ?loc)))
(step s4 (orient-then-push card card-slot)
    (waitfor (at hand ?loc)))
(step s4 (terminate) (waitfor (inserted card)))
(step aux1 (restart ?self)
    (waitfor (resumed ?self))))
```

Language Features

- Step Abstraction
- Method Selection
- Interactive Behavior
- Concurrency Control
- Dynamic Prioritization
- Interruption Management
- Periodicity Management
- Expectation Monitoring

Predicting Design-Facilitated Operator Error

Cognitive biases cause predictable forms of error to arise in predictable circumstances. Such errors occur when: factors that promote bias are present, factors that suppress bias are absent.

Frequency bias: do what is usually done

Recency bias: do what was done last time

Confirmation bias: do what accords with expectations

Innate biases: illusions, visual dominance, completion, satisficing,...

Bias promoting factors: time pressure, high subjective workload Bias suppressing factors: recent perceptual or cognitive events (e.g. self-remindings) indicating inappropriateness of bias

(a) Normal workload: Both runways open

(c) Normal workload; Left runway closed

(b) Low workload: Both runways open

(d) Low workload: Left runway closed